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Conclusion 
 

The ten conditions of semiotic modelling of the graphs 
 
1. Structure is the attribute of characterizing the relationships or organizing of elements of the discrete 
object. Structure GS is presentable as a graph G. A one-to-one correspondence of graphs G that retain the 
structure GS is isomorphism. Isomorphic graphs have the same structure GS, {G1 … Gq} GS. 
 
About the structure can write the voluminous volumes, on the other hand, the meaning of structure is 
devalued to some kind of vague adjective. In fact, the structure is precisely definable and here presented is 
a concise summary of the many definitions. Associating the structure and graphs is for some unusual, but, 
for example, the structure of an institution or chemical compound should be clearly imagined.  
 
2. Semiotics. Structure GS is something qualitative that only with the known graph-theoretical tools do 
not recognizable. The structure as such is investigated by help semiotics of structure.  
 
The meaning of the structure is mathematically undefined. They talk about the mathematical, algebraic 
and other structures, but the structure itself is not defined. On the structure, as such, are not interested and 
speak only about the specific problem- or object-oriented structures. For studying of the structure is 
necessary to "fall" or "rise up" to the level of semiotics. 
 
3. Binary relation. It is confirmed that the recognition of structure reduces to the deep identification of 
binary relations rij between its elements with exactness up to binary orbits Rn of vertex pairs of the 
group AutG. The binary relations rij are identified with specific binary invariants, that we to binary signs 
call, among these the corresponding elements of products of the adjacency matrices En. 
 
It is important initial condition, on which is based all the activity of structural research. The deep 
identification of binary relations can be seen as a “way of data mining”, or a “mode of structural 
arithmetic”. It can be for some like or not, but the important thing is that it works. 
 
4. Model of structure SM is an ordered system of binary signs what recognizes the structure with 
exactness up to binary orbits and isomorphism.  
 
5. Position. Structure model SM is decomposed with exactness up to the orbits of elements Vk and 
binaries Rn. Orbit  of AutG constitutes an equivalence class, which here should be called to position. 
 
The orbits of AutG and positions of the structure model SM coincide. The number of positions and their 
sizes determine the symmetry properties of the structure and allow classify these. The smaller number of 
positions, and the more their size, the structure is more symmetrical. Pairs of vertices belonging to a 
binary position Rn form the position’s structure. 
 
6. Structural equivalence GSA  GSB and isomorphism of graphs GA  GB : 
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Explanations: 
a) Different graphs GA and GB have equivalent structure models SMA  SMB! This means that the 

graphs are isomorphic GA  GB and structures are equivalent and the. 
b) The element pairs are divided to five binary positions Rn, wherein the adjacent elements or 

“edges” to three binary(+)positions (full line, a dotted, dashed-line) that coincides with binary 
signs C, D, E correspondingly. The structural elements are divided to three positions Vk. 

c) The column ui of model consists of the frequency vectors, which for the element i show its 
relations with other elements. On the basis of vectors ui are arranged the positions Vk in model. 

d) The column si of model consists of the position vectors that represent the connections of element i 
with elements in corresponding positions k. If on the framework of frequency vectors arises 
differences of position vectors, then by latest obtained a complementary partition into positions. 

 
For recognition the equivalence of structural models A and B and isomorphism is sufficient to satisfy the 
three conditions: 1) coincidence the sequences of binary signs {d.n.q.ij}A and {d.n.q.ij}B; 2) coincidence 
of the frequency vectors {ui}A and {ui}B; 3) coincidence the position vectors {si}A ja {si}B.  
 
7. Adjacent structure. With disjunctive removing {G\e1G\e2…G\eq}n, or adding 
{Ge1Ge2…Geq,}n, a connection in the framework of a binary position Rn obtained largest sub-
graphs {G\e1G\e2…G\eq,}n, or smallest supergraphs {Ge1Ge2…Geq,}n, are isomorphic and 
constitute adjacent-substructures GSsub

n or adjacent-superstructures GSsup
n correspondingly. 

 
It is an essential lawfulness that already in 1973 had published a modest but has been ignored for decades. 
The reason for this is probably that orbit, i.e. the position in structural terms, is considered to be so 
specific attribute of the group theory, that them are few who deign to link these to the graphs. Binary 
positions as such no one has previously observed. 
 
8 Morphism. Disjunctive operation Fn= {(eij)1…(eij)q}n in the framework of binary position Rn that 
changes the structure GS to its adjacent structure GSadj

n, called morphism Fn, Fn: GSGSadj
n. Morphism 

is reversible Frev
n: each adjacent structure GSadj

n has a reverse position Rrev
n, where corresponding 

morphism reconstruct Frev
n (restore) the initial structure, Frev

n: GSadj
nGS. 

 
The existence of a morphism ensues directly from the existence of adjacent structures. Binary positions 
Rn of the structure GS are on the aspect of its adjacent structures GSadj

n all reverse positions Rrev
n. 

 
9. Factorability (decomposability) and reconstructing (restorability). If morphisms Fn: GSGSadj

n 
disjunctively F1…Fn…FN are applied to the binary orbits  R1,…,Rn,…,RN, of the structure GS, 
then is structure GS factorized (decomposed) to its adjacent structures GSadj

1,…,GSadj
n,…,GSadj

N. The 
reversibility of the morphism ensures the reconstructing on the base of its adjacent structures (which does 
not mean that obligatory on the same binary operations).  
 
About the problem of recoverability matters should emphasize that it takes place on the base of reverse 
binary position Rrev

n, i.e. on the base of an arbitrary operation in this position. For many decades the 
attempts of proving the restoration on the base the wording of Ulam’s Conjecture were unsuccessful and it 
is proved only for some types of graphs – there not general solution. The considering of recoverability on 
the level of isomorphism classes or structure makes its proving on the ground of wording the Ulam’s 
Conjecture to a meaningless hobby. The proving of recoverability on the level of isomorphism classes has 
recommended by grandmaster W. T. Tutte yet in 1998. Restorability of structure is a reverse operation of 
factorability – whole story! I would hope that my for this conception not accuse in heresy. 
 
10. Sequence and system of adjacent-structures. Sequence of adjacent structures SF changes a 
structure to its some kind sub- or superstructure: SF= F1:GS0 F2:GS1 F3:GS2… Ft:GSt–1GSt,. 
Structural changes may be take place in the form assemblages of sequences. Assemblage of sequences of 
adjacent structures between an empty structure GS and complete structure GS constitutes the system of 
all the structures with n elements. 

The upper side of lattice of the system of all the structures with six elements G|V|=6: 
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Explanations: 

a) |R+| denote the structural level m, i.e. the number of connections (i.e. “edges”) in the structures.  
b) Each graph presents there its isomorphism class or structure GS, each link presents morphism F. 
c) Each structure GS in this lattice is an adjacent structure GSadj

n of some other structures. 
d) The complements of structures placed symmetrically in the lower side of lattice. 
e) Essential meanings in the systems G|V| have probability characteristics of morphisms PF and on 

this base obtained existence probabilities PS. 
f) The number of structures with six elements is 156, the number of morphisms is 572. 

 
Summary:  

 The structure is a complete invariant of isomorphic graphs. 
 With deep-identification of binary relations obtained structure model recognizes the structure with 

exactness up to binary positions and isomorphism. 
 The factorability (decomposability) of the structure on the base of its binary positions to adjacent 

structures and reconstructing (restorability) on the base of adjacent structures are equivalent but 
opposite operations. 

 The assemblages of successions of adjacent structures form correct systems of structures with n-
elements. 
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